TEOG MATEMATİK SORU ÇÖZÜMÜ

Ünlü Matematikçiler








1910 yılında Selanik'te doğdu. Yüksek öğrenimini Fransa'da Ecole Normale Superieure'de tamamladı (1932). Bir süre Galatasaray Lisesi'nde matematik öğretmenliği yaptıktan sonra İstanbul Üniversitesi Fen Fakültesi'nde doçent adayı olarak çalıştı. Doktorasını yapmak için Almanya'ya gitti. 1938 yılında Göttingen Üniversitesi'nde doktorasını bitirdi. Yurda döndüğünde İstanbul Üniversitesi Fen Fakültesi'nde profesör ve ordinaryus profersörlüğe yükseldi. Burada 1962 yılına kadar çalıştı. Daha sonra Robert Koleji'nde Matematik dersleri vermeye başladı. 1964 yılında Türkiye Bilimsel ve Teknik Araştırma Kurumu (TÜBİTAK) bilim kolu başkanı oldu.

 

Daha sonra gittiği Amerika Birleşik Devletleri'nde araştırma ve incelemelerde bulundu; Kaliforniya Üniversitesi'nde konuk öğretim üyesi olarak görev yaptı. 1967 yılında yurda dönüşünde Orta Doğu Teknik Üniversitesi'nde öğretim üyeliğine getirildi. 1980 yılında emekli oldu. Emekliye ayrıldıktan sonra TÜBİTAK'a bağlı Gebze Araştırma Merkezi'nde görev aldı. 1985 ve 1989 yılları arasında Türk Matematik Derneği başkanlığını yaptı.

Arf İnönü Armağanı'nı (1948) ve TÜBİTAK Bilim Ödülü'nü kazandı (1974). Cebir ve Sayılar Teorisi üzerine uluslararası bir sempozyum 1990'da 3 ve 7 Eylül tarihleri arasında Arf'in onuruna Silivri'de gerçekleştirilmiştir. Halkalar ve Geometri üzerine ilk konferanslarda 1984'te İstanbul'da yapılmıştır. Arf, matematikte geometri kavramı üzerine bir makale sunmuştur. Cahit Arf 1997 yılının Aralık ayında bir kalp rahatsızlığı nedeniyle aramızdan ayrıldı...

 





Alman astronomu, matematikçisi ve fizikçisidir. Daha çocukluğunda, erken gelişmiş zekası, matematiğe karşı zekasıyla sivrildi ve Brounseweig dükünün ilgisini çekti. Dük, okul masraflarını üzerine alarak O' nu Göttingen Üniversitesine gönderdi. Henüz 16 yaşındayken Herschel'in 1781 de keşfettiği Uranüs gezegeninin yörünge elemanlarını hesaplayarak, Yer'in bir noktasından yapılan ölçülerle, bu gezegenin yörünge elemanlarını bulmaya yarayan ve günümüzde hala kullanılan bir metot ortaya koydu. 1798 de Helmesdt'e yaptığı bir inceleme gezisinden sonra, Braunschweig'a döndü ve birkaç yıl içinde kendisini büyük matematikçiler sırasına koyacak bir seri çalışma raporu yayımladı.
Sayılar üzerine incelemeleri topladığı Disqvisitiones Arithmetice'de (Aritmetik Araştırmalara) (1805), eşitlikleri, ikinci dereceden şekilleri, serilerin yakınsaklığını v.b. ele aldı. Piazzi tarafından 1810 da, küçük gezen Cerez'in keşfinden sonra Gauss, çeşitli gökmekaniği araştırmaları yaptı, hayatının sonuna kadar bağlı kalacağı Göttingen rasathanesine müdür oldu (1807) .Theoria Motus Corporum Coelestium İn Sectionibus Conicis Solem Ambientium (Konik kesitIi ? gökcisimlerinin güneş çevresindeki hareket kuramı) (1808) adlı ünlü eserini yazd1. Legendre ile hemen aynı zamanda düşündüğü ve daha önce 1797 de yararlandığı ?- en küçük kareler metodundan (1821) başka, yanılmalar teorisi ve iki terimli denklemlerin çözümü için genel bir metot buldu; uygun-tasvir üzerine araştırmalar, yüzeylerin eğriliği ve Disqvisitiones Generales Carca Sperficien Curvas'ta (eğri yüzeyler üzerine genel araştırmalar) (1827) , ispat ettiği ünlü teoremi de yazmak gerekir. Bu teoreme göre, bükülebilen fakat uzatılamayan bir yüzeyin eğriliği, yani eğriliklerinin çarpımı değişmez.
Göttingen ile Altona arasındaki meridyen yayının ölçülmesi sırasında (1821,1824), Gussu, geodezi çalışmalarında ışıklı işaretler verebilmek için, kendi adını taşıyan Helyotropu tasarladı. Optik alanında, eksene yakın ışık ışınları için düzenlenmiş merkezi optik sistemlerinin genel teorisini kurdu. Elektrikle özelIikle magnetizma ile ilgilendi, bu alanda magnetometreyi icat etti. Ve Resultate Aus Den Beabochtungen Des Manetischen Vereins (Yer magnetizmasının genel kuramı) (1839), adlı eserinde, magnetizmanın, matematik teorisini formülleştirdi. Suclides'ci olmayan hiperbolik geometrinin keşfinde, bu konuda hiç bir şey yayımlamamış olmakla birlikte, Gauss, Balyai ve Labocewsky'den önce çalışmalar yapmış ve başarı sağlamıştı.
 



Asıl adı Giyaseddin Ebu'l Feth Bin İbrahim El Hayyam' dır. 18 Mayıs 1048'-de İranın Nişabur kentinde doğan Ömer Hayyam bir çadırcının oğluydu. Çadırcı anlamına gelen soyadını babasının mesleğinden almıştır.Fakat o soyisminin çok ötesinde işlere imza atmıştır. Daha yaşadığı dönemde İbn-i Sina'dan sonra Doğu'nun yetiştirdiği en büyük bilgin olarak kabul ediliyor-du. Tıp, fizik, astronomi, cebir, geometri ve yüksek matematik alanlarında önemli çalışmaları olan Ömer Hayyam için zamanın bütün bilgilerini bildiği söylenirdi. O herkesten farklı olarak yaptığı çalışmaların çoğunu kaleme almadı, oysa O is-mini çokça duyduğumuz teoremlerin isimsiz kahramanıdır. Elde bulunan ender kayıtlara da-yanılarak Ömer Hayyam'ın çalışmaları şöyle sıralanabilir:

Yazdığı bilimsel içerikli kitaplar arasında Cebir ve Geometri Üzerine, Fiziksel Bilimler Alanın-da Bir Özet, Varlıkla İlgili Bilgi Özeti, Oluş ve Görüşler, Bilgelikler Ölçüsü, Akıllar Bahçesi yer alır. En büyük eseri Cebir Risalesi'dir. On bölümden oluşan bu kitabın dört bölümünde kübik denklemleri incelemiş ve bu denklemleri sınıflandırmıştır. Matematik tarihinde ilk kez bu sınıflandırmayı yapan kişidir. O cebiri, sayısal ve geometrik bilinmeyenlerin belirlenmesini amaçlayan bilim olarak tanımlardı. Matematik bilgisi ve yeteneği zamanın çok ötesinde olan Ömer Hayyam denklemlerle ilgili başarılı çalışmalar yapmıştır. Nitekim, Hayyam 13 farklı 3. dereceden denklem tanımlamıştır. Denklemleri çoğunlukla geometrik metot kullanarak çözmüştür ve bu çözümler zekice seçilmiş konikler üzerine dayandırılmıştır. Bu kitabında iki koniğin arakesitini kullanarak 3. dereceden her denklem tipi için köklerin bir geometrik çizi-mi bulunduğunu belirtir ve bu köklerin varlık koşullarını tartışır.

Bunun yanısıra Hayyam, binom açılımını da bulmuştur. Binom teoerimini ve bu açılımdaki katsayıları bulan ilk kişi olduğu düşünülmektedir. (Pascal üçgeni diye bildiğimiz şey aslında bir Hayyam üçgenidir).Öğrenimi tamamlayan Ömer Hayyam kendisine bugünlere kadar uzana-cak bir ün kazandıran Cebir Risaliyesi'ni ve Rubaiyat'ı Semerkant'ta kaleme almıştır. Dönemin üç ünlü ismi Nizamülmülk, Hasan Sabbah ve Ömer Hayyam bu şehirde bir araya gelmiştir. Dönemin hakanı Melikşah, adı devlet düzeni anlamına gelen ve bu ada yakışır yaşayan veziri Nizamül-mülk'e çok güvenirdi. Ömer Hayyam ile ilk kez Semerkant'ta tanışan Nizam onu İsfa-han'a davet eder. Orada buluştuklarında O'na devlet hülyasından bahseder ve bu büyük ha-yalinin gerçekleşmesi için Hayyam'dan yardım ister. Fakat Hayyam devlet işlerine karışmak istemez ve teklifini geri çevirir.4 Aralık 1131'de doğduğu yer olan Nişabur' da fani dünyaya veda eder..




Blaise Pascal, (d. 19 Haziran 1623 – ö. 19 Ağustos 1662). Fransız matematikçi, fizikçi ve düşünür. En bilinen temel eseri
Düşünceler'dir. Daha 16 yaşındayken konikler üzerine bir inceleme yazdı. 1642'de , henüz 18'inde iken, vergi tahsildarı babasının işini kolaylaştıracak, dişliler ve tekerleklerden oluşan mekanik bir hesap makinesi tasarladı. Matematikle uğraşan babasıyla birlikte Paris Mersenne Akademisi'ne kabul edildi. 19 Haziran 1623'te doğdu, 19 Ağustos 1662'de öldü. Pascal, henüz küçük yaşta kendisini gösteren dehalardandır. Henüz 12 yaşındayken, hiç geometri bilgisine sahip olmadığı halde, daireler ve eşkenar üçgenler çizmeye başlamış, bir üçgenin iç açılarının toplamının iki dik açıya eşit olduğunu kendi kendine bulmuştur. Avukat olan ve matematikle çok ilgilenen babası, onun Yunanca ve Latince’yi iyi öğrenmeden matematiğe yönelmesini istemiyordu. Bu nedenle bütün matematik kitaplarını saklayarak Pascal’ın bu konu ile ilgilenmesini yasaklamıştır. Pascal, çocukluğunda "Geometri neyi inceler?" sorusunu babasına sormuş ve "doğru biçimde şekiller çizmeyi ve şekillerin kısımları arasındaki ilişkileri inceler" cevabını almıştır. Pascal, bu cevaba dayanarak, gizli gizli geometri teoremleri kurmaya ve kanıtlamaya başlamıştır. Sonunda babası, onun yeteneğini anlamış ve ona Öklit’in (Euclid) Elementler’ini ve Apollonius’un Konikler’ini vermiştir. Dil derslerinden arta kalan zamanlarında babasının verdiği kitapları okuyan Pascal, 16 yaşında konikler üzerine bir eser yazmıştır. Bu eserin mükemmelliği karşısında Descartes, eserin Pascal gibi genç biri tarafından yazılmış olduğuna inanmakta güçlük çekmiştir.

Pascal, 19 yaşında, aritmetik işlemlerini mekanik olarak yapan bir hesap makinesi icat etmiştir.

Pascal yalnızca teorik bilimlerde değil, pratik ve deneysel bilimlerde de yetenekli ve özgün bir araştırmacıydı. 23 yaşında, Toricelli'nin atmosfer basıncı ile ilgili çalışmasını incelemiş ve bir dağa çıkartılan barometredeki civa sütununun düştüğünü, yani yükseğe çıkıldıkça hava basıncının azaldığını göstermiştir. Diş ağrısından uyuyamadığı bir gece rulet oyunu ve sikloid üzerine düşünmüş ve sikloid eğrisinin özelliklerini keşfetmiştir.

Pascal, Fermat ile yazışarak, olasılık teorisini kurmuş ve bir binom açılımında katsayıları vermiştir. Pascal Üçgeni'nin keşfi de ona aittir.

Pascal, çok genç yaşlarda çok önemli çalışmaları tamamlamış ve matematiğin gelişimine çok önemli katkılar yapmıştır. Pascal, 25 yaşına geldiğinde kendisini felsefe ve dine adamış, 39 yaşında da ölmüştür







Rönesans sonrası Avrupa'da, Kopernik'le başlayan, Kepler, Galileo ve Newton'la 17. yüzyılda doruğuna ulaşan bilimsel devrim, kökleri Helenistik döneme uzanan bir olaydır. O dönemin seçkin bilginlerinden Aristarkus, güneş-merkezli astronomi düşüncesinde Kopernik'i öncelemişti; Arşimet yaklaşık iki bin yıl sonra gelen Galileo'ya esin kaynağı olmuştu; Öklid çağlar boyu yalnız matematik dünyasının değil, matematikle yakından ilgilenen hemen herkesin gözünde özenilen, yetkin bir örnekti. Öklid, M.Ö. 300 sıralarında yazdığı 13 ciltlik yapıtıyla ünlüdür. Bu yapıt, geometriyi (dolayısıyla matematiği) ispat bağlamında aksiyomatik bir dizge olarak işleyen, ilk kapsamlı çalışmadır. 19. yüzyıl sonlarına gelinceye kadar alanında tek ders kitabı olarak akademik çevrelerde okunan, okutulan Elementler'in, kimi yetersizliklerine karşın, değerini bugün de sürdürdüğü söylenebilir .
Egeli matematikçi Öklid'in kişisel yaşamı, aile çevresi, matematik dışı uğraş veya meraklarına ilişkin hemen hiçbir şey bilinmemektedir. Bilinen tek şey; Iskenderiye Kraliyet Enstitüsü'nde dönemin en saygın öğretmeni; alanında yüzyıllar boyu eşsiz kalan bir ders kitabının yazarı olmasıdır. Eğitimini Atina'da Platon'un ünlü akademisinde tamamladığı sanılmaktadır. O akademi ki giriş kapısında, ''Geometriyi bilmeyen hiç kimse bu kapıdan içeri alınmaz!'' levhası asılıydı.
Öklid'in bilimsel kişiliği, unutulmayan iki sözünde yansımaktadır: Dönemin kralı I. Ptolemy , okumada güçlük çektiği Elementler'in yazarına, "Geometriyi kestirmeden öğrenmenin yolu yok mu?'' diye sorduğunda, Öklid "Özür dilerim, ama geometriye giden bir kral yolu yoktur'' der. Bir gün dersini bitirdiğinde öğrencilerinden biri yaklaşır, ''Hocam, verdiğiniz ispatlar çok güzel; ama pratikte bunlar neye yarar?'' diye sorduğunda, Öklid kapıda bekleyen kölesini çağırır, "Bu delikanlıya 5-10 kuruş ver, vaktinin boşa gitmediğini görsün!'' demekle yetinir .
Öklid haklı olarak "geometrinin babası" diye bilinir; ama geometri onunla başlamış değildir. Tarihçi Herodotus (M.Ö. 500) geometrinin başlangıcını, Nil vadisinde yıllık su taşmalarından sonra arazi sınırlarını belirlemekle görevli kadastrocuların çalışmalarında bulmuştu. Geometri "yer" ve "ölçme" anlamına gelen "geo" ve "metrein" sözcüklerinden oluşan bir terimdir. Mısır'ın yanı sıra Babil, Hint ve Çin gibi eski uygarlıklarda da gelişen geometri o dönemlerde büyük ölçüde, el yordamı, ölçme, analoji ve sezgiye dayanan bir yığın işlem ve bulgudan ibaret çalışmalardı. Üstelik ortaya konan bilgiler çoğunlukla kesin olmaktan uzak, tahmin çerçevesinde kalan sonuçlardı. Örneğin, Babilliler dairenin çemberini çapının üç katı olarak biliyorlardı. Bu öylesine yerleşik bir bilgiydi ki; pi' nin değerinin 3 değil, 22/7 olarak ileri sürenlere, bir tür şarlatan gözüyle bakılıyordu. Mısırlılar bu konuda daha duyarlıydılar: M.Ö. I800 yıllarına ait Rhind papürüslerinde onların pi'yi yaklaşık 3.1604 olarak belirledikleri görülmektedir; ama Mısırlıların bile her zaman doğru sonuçlar ortaya koyduğu söylenemez. Nitekim, kesik kare piramidin oylumunu (hacmini) hesaplamada doğru formülü bulan Mısırlılar, dikdörtgen için doğru olan bir alan formülünün, tüm dörtgenler için geçerli olduğunu sanıyorlardı.
Aritmetik ve cebir alanında Babilliler , Mısırlılardan daha ilerde idiler. Geometride de önemli buluşları vardı. Örneğin, "Pythagoras Teoremi" dediğimiz, bir dik açılı üçgende dik kenarlarla hipotenüs arasındaki bağıntıya ilişkin önerme "bir dik üçgenin dik kenar karelerinin toplamı, hipotenüsün karesine eşittir" buluşlarından biriydi. Ne var ki, doğru da olsa bu bilgiler ampirik nitelikteydi; mantıksal ispat aşamasına geçilmemişti henüz. Ege' li Filazof Thales'in (M.Ö. 624-546), geometrik önermelerin dedüktif yöntemle ispatı gereğini ısrarla vurguladığı, bu yolda ilk adımları attığı bilinmektedir . Mısır gezisinde tanıştığı geometriyi, dağınıklıktan kurtarıp, tutarlı, sağlam bir temele oturtmak istiyordu. İspatladığı önermeler arasında . ikizkenar üçgenlerde taban açılarının eşitliği; kesişen iki doğrunun oluşturduğu karşıt açıların birbirine eşitliği vb. ilişkiler vardı.
Klasik çağın "yedi Bilgesi" nden biri olan Thales'in açtığı bu yolda, Pythagoras ve onu izleyenlerin elinde, matematik büyük ilerlemeler kaydetti, sonuçta Elementler'de işlenildiği gibi, oldukça soyut mantıksal bir dizgeye ulaştı. Pythagoras, matematikçiliğinin yanı sıra, sayı mistisizmini içeren gizliliğe bağlı bir tarikatın önderiydi. Buna göre; sayısallık evrensel uyum ve düzenin asal niteliğiydi; ruhun yücelip tanrısal kata erişmesi ancak müzik ve matematikle olasıydı.
Buluş ve ispatlarıyla matematiğe önemli katkılar yapan Pythagorasçılar , sonunda inançlarıyla ters düşen bir buluşla açmaza düştüler. Bu buluş, karenin kenarı ile köşegenin ölçüştürülemeyeceğine ilişkindi. kök 2 gibi, bayağı kesir şeklinde yazılamayan sayılar , onların gözünde gizli tutulması gereken bir skandaldı. Rasyonel olmayan sayılarla temsile elveren büyüklükler nasıl olabilirdi? (Pythagorasçıların tüm çabalarına karşın üstesinden gelemedikleri bu sıkıntıyı, daha sonra tanınmış bilgin Eudoxus oluşturduğu, irrasyonel büyüklükler için de geçerli olan, Orantılar Kuramı'yla giderir).
Öklid, Pythagoras geleneğine bağlı bir ortamda yetişmişti. Platon gibi, onun için de önemli olan soyut düşünceler , düşünceler arasındaki mantıksal bağıntılardı. Duyumlarımızla içine düştüğümüz yanlışlıklardan, ancak matematiğin sağladığı evrensel ilkeler ve salt ussal yöntemlerle kurtulabilirdik. Kaleme aldığı Elementler, kendisini önceleyen Thales, Pythagoras, Eudoxus gibi, bilgin-matematikçilerin çalışmaları üstüne kurulmuştu. Geometri bir önermeler koleksiyonu olmaktan çıkmış, sıkı mantıksal çıkarım ve bağıntılara dayanan bir dizgeye dönüşmüştü. Artık önermelerin doğruluk değeri, gözlem veya ölçme verileriyle değil, ussal ölçütlerle denetlenmekteydi. Bu yaklaşımda pratik kaygılar ve uygulamalar arka plana itilmişti.
Kuşkusuz bu, Öklid geometrisinin pratik problem çözümüne elvermediği demek değildi. Tam tersine, değişik mühendislik alanlarında pek çok problemin, bu geometrinin yöntemiyle çözümlendiği; ama Elementler'in, eğreti olarak değindiği bazı örnekler dışında, uygulamalara yer vermediği de bilinmektedir. Öklid'in pratik kaygılardan uzak olan bu tutumunun matematik dünyasındaki izleri, bugün de rastladığımız bir geleneğe dönüşmüştür.
Gerçekten, özellikle seçkin matematikçilerin gözünde, matematik şu ya da bu işe yaradığı için değil, yalın gerçeğe yönelik, sanat gibi güzelliği ve değeri kendi içinde Soyut bir düşün uğraşı olduğu için önemlidir.
Matematiğin tümüyle ussal bir etkinlik olduğu doğru değildir. Buluş bağlamında tüm diğer bilimler gibi matematik de, sınama-yanılma, tahmin, sezgi, içedoğuş türünden öğeler içermektedir. Yeni bir bağıntıyı sezinleme, değişik bir kavram veya yöntemi ortaya koyma, temelde mantıksal olmaktan çok psikolojik bir olaydır. Matematiğin ussallığı, doğrulama bağlamında belirgindir. Teoremlerin ispatı, büyük ölçüde kuralları belli, ussal bir işlemdir; ama şu sorulabilir: Öklid neden, geometrinin ölçme sonuçlarıyla doğrulanmış önermeleriyle yetinmemiş, bunları ispatlayarak, mantıksal bir dizgede toplama yoluna gitmiştir?
Öklid'i bu girişiminde güdümleyen motiflerin ne olduğunu söylemeye olanak yoktur; ancak, Helenistik çağın düşün ortamı göz önüne alındığında, başlıca dört noktanın öngörüldüğü söylenebilir:
1) İşlenen konuda çoğu kez belirsiz kalan anlam ve ilişkilere açıklık getirmek;
2) İspatta başvurulan öncülleri (varsayım, aksiyom veya postulatları) ve çıkarım kurallarını belirtik kılmak;
3) Ulaşılan sonuçların doğruluğuna mantıksal geçerlik kazandırmak (Başka bir deyişle, teoremlerin öncüllere görecel zorunluluğunu, yani öncülleri doğru kabul ettiğimizde teoremi yanlış sayamayacağımızı göstermek);
4) Geometriyi, ampirik genellemeler düzeyini aşan soyut-simgesel bir dizge düzeyine çıkarmak (Bir örnekle açıklayalım: Mısırlılar ile Babilliler kenarları 3, 4, 5 birim uzunluğunda olan bir üçgenin, dik üçgen olduğunu deneysel olarak biliyorlardı; ama bu ilişkinin 3, 4, 5 uzunluklarına özgü olmadığını, başka uzunluklar için de geçerli olabileceğini gösteren veriler ortaya çıkıncaya dek kestirmeleri güçtü; buna ihtiyaçları da yoktu. Öyle kuramsal bir açılma için pratik kaygılar ötesinde, salt entellektüel motifli bir arayış içinde olmak gerekir. Nitekim, Egeli bilginler somut örnekler üzerinde ölçmeye dayanan belirlemeler yerine, bilinen ve bilinmeyen tüm örnekler için geçerli soyut genellemeler arayışındaydılar. Onlar, kenar uzunluklan a, b, c diye belirlenen üçgeni ele almakta, üçgenin ancak a2+b2=c2 eşitliği gerçekleştiğinde dik üçgen
olabileceği genellemesine gitmektedirler).
Öklid oluşturduğu dizgede birtakım tanımların yanı sıra, beşi "aksiyom" dediği genel ilkeden, beşi de "postulat" dediği geometriye özgü ilkeden oluşan, on öncüle yer vermiştir (Öncüller, teoremlerin tersine ispatlanmaksızın doğru sayılan önermelerdir). Dizge tüm yetkin görünümüne karşın, aslında çeşitli yönlerden birtakım yetersizlikler içermekteydi. Bir kez verilen tanımların bir bölümü (özellikle, "nokta'', "doğru", vb. ilkel terimlere ilişkin tanımlar) gereksizdi. Sonra daha önemlisi, belirlenen öncüller dışında bazı varsayımların, belki de farkında olmaksızın kullanılmış olması, dizgenin tutarlılığı açısından önemli bir kusurdu. Ne var ki, matematiksel yöntemin oluşma içinde olduğu başlangıç döneminde, bir bakıma kaçınılmaz olan bu tür yetersizlikler, giderilemeyecek şeyler değildi. Nitekim, l8. yüzyılda başlayan eleştirel çalışmaların dizgeye daha açık ve tutarlı bir bütünlük sağladığı söylenebilir. Üstelik dizgenin irdelenmesi, beklenmedik bir gelişmeye de yol açmıştır: Öncüllerde bazı değişikliklerle yeni geometrilerin ortaya konması. "Öklid-dışı" diye bilinen bu geometriler, sağduyumuza aykırı da düşseler, kendi içinde tutarlı birer dizgedir. Öklid geometrisi, artık var olan tek geometri değildir. Öyle de olsa, Öklid'in düşünce tarihinde tuttuğu yerin değiştiği söylenemez.
Çağımızın seçkin filozofu Bertrand Russell'ın şu sözlerinde Öklid'in özlü bir değerlendirmesini bulmaktayız: '"Elementler'e bugüne değin yazılmış en büyük kitap gözüyle bakılsa yeridir. Bu kitap gerçekten Grek zekasının en yetkin anıtlarından biridir. Kitabın Greklere özgü kimi yetersizlikleri yok değildir, kuşkusuz: dayandığı yöntem salt dedüktif niteliktedir; üstelik, öncüllerini oluşturan varsayımları yoklama olanağı yoktur. Bunlar kuşku götürmez apaçık doğrular olarak konmuştur. Oysa, 19.yüzyılda ortaya çıkan Öklid-dışı geometriler, bunların hiç değilse bir bölümünün yanlış olabileceğini, bunun da ancak gözleme başvurularak belirlenebileceğini göstermiştir."
Gene Genel Rölativite Kuramı'nda Öklid geometrisini değil, Riemann geometrisini kullanan Einstein'ın, Elementler'e ilişkin yargısı son derece çarpıcıdır: "Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline boşuna kapılınasın!"






Pascal, 19 Haziran 1623 günü Fransa'da Clermont'ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris'e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal'ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.
Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton'dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat'la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues'dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.
Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal'ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides'in "Elements" adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.
Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides'in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert'in anlattıklarına göre; Pascal Euclides'in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal'ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu'yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal'a bir memurluk verir.
Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal'ın bu büyük teoremine "kedi beşiği" adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes'i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal'ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal'ın geometrisinde çokluk yoktur.
Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.
Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.
1648 yılında Toriçelli'nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal'la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal'ın barometre deneyleri düşüncesini, Mersenne'nin çalışmalarından çalmış olmasından şüphelendi. Descartes'le Pascal'ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal'sa Jansen'in mezhebini savunuyordu. Pascal'ın açık sözlü kız kardeşi Jacqueline'nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes'in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.
Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat'la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat'ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal'ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.
Bu büyük olasılıklar kuramının çıkış nedeni, Pascal'a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal'ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.


1
11
121
1331
14641


Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal'ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.
Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır.









Bu sayfa hakkında yorum ekle:
İsminiz:
E-mail adresiniz:
Siteniz:
Mesajın:

TEOG MATEMATİK SORU ÇÖZÜMÜ desing by kahyaoğlu